
24 August 19, 1992

1.10 CONCLUSION. A BRIEF HISTORY

The history of the current version of USSA goes back to the original version of
Pyramid’s Reliant system (1989-1991). In that system, hardware and software
resources had a predefined number of states (like on-line, off-line, faulted, e.t.c.).
Resources moved from state to state according to the hardcoded algorithms. Dif-
ferent resources had different but sometimes similar algorithms. It is not known
to the author, who has to get credit for the Reliant design.

At that time, Lily Hsiao came up with an idea of an object-oriented approach to
the reliant project, were resources inherit properties from each other. At the same
time, the author was working on the USSA parser generator which incorporated
object oriented features in multi-language grammar definition. He also came up
with an idea of a state change as a result of message passing/receiving between
resources. Combination of these ideas has resulted in the current USSA as a core
for the new Reliant system. Some latest additions were suggested by Dan Jones.

August 17, 1992 23

SPECIAL FLAGS

The following flags should be used only when serious problems occur at USSA
run time, like hard to resolve parsing conflicts, or USSA abnormal termination.
They suppress certain USSA phases and allow for careful examination of the gen-
erated parsing tables.

d

If specified, forces USSA to suppress enumeration of states while creating parsing
tables. State numbers are assigned only when the verbose description (‘-v’ flag)
is printed out.

f

If specified, USSA prints out detailed information about lookaheads in the ver-
bose description file (‘-v’ flag).

w

If specified, USSA does not split paths leading to the states with reduce/reduce
conflicts. Also, ‘-d’ flag is set automatically.

l

If specified, USSA does not calculate lookaheads. Also, ‘-d’ flag is set automati-
cally.

Different combinations of special flags make USSA to produce partially built
parsing tables. For example, combination of flags ‘-vwl’ prints out in .v file the
original DFA, without splitting and lookaheads.

22 August 19, 1992

r

If specified, then USSA generates tokens as local enumerations in the respective
C++ class for every USSA type. The values of enumeration are the same as gener-
ated constants in .m file (if ‘-m’ is specified).

q

If specified, then USSA exits after its parsing phase if some declared nodes remain
undefined. No C++ sources is generated.

u

If specified, then C++ #line directives (which refer to the original USSA source
file) are not placed before actions in the generated .C and .h files.

s

If specified, optimizes memory use while creating sets of lookahead symbols.
Causes slower execution, but may help when memory capacity is limited.

e ext

If specified, then ext will be used for extension of the outputFile (C - default).

p

If specified, disables error printout.

t

If specified, traces phases of the USSA execution on stderr.

i path

If specified, the directory path will be searched for USSA include files (/usr/
RelX/ by default).

x

If specified, reports about nonterminals unreached from start symbol. If any is
found, makes USSA exit with nonzero code. Also, sets ‘-v’ flag automatically
and flags unreached nonterminals in .v file.

August 17, 1992 21

o outputFile

If specified, generated C++ code will be stored in outputFile. If not specified,
the generated code will be stored in sourceFile.C by default.

v

If specified, USSA will printout verbose description of the generated minimal LR1
tables. If ‘-o’ is specified, description will be placed in outputFile.v, other-
wise - in sourceFile.v.

h

If specified, USSA will not create sourceFile.h (or outputFile.h, if ‘-o’ is
specified). If not specified, then, depending on the presence or absence of the
other options, this file contains #define declarations for tokens from the type’s
rules and respective classes for USSA types. Usually, this flag is not specified.

m

If specified, USSA will printout #define declarations for tokens from the type’s
rules in sourceFile.m (outputFile.m if ‘-o’ is specified). This option is
used when some, unrelated to USSA, C++ sources need to know the values of
tokens in order to communicate with the base monitor. Values defined are the
same as the values from the respective local enumerations (see chapter 1.7).

n

If specified, USSA will not create parsing tables and definitions of respective C++
classes for types which are defined via extern keyword. If other, non-extern
types, refer to the extern types as their base types, then there must be an exter-
nal action with the C++ #include statement for the file containing definitions of
the respective classes for the extern base types (see next option - ‘-b’). Regard-
less of ‘-n’ option, USSA always generates definitions for non extern types
and external actions from such types in .h file. If ‘-n’ is specified, they will also
be generated in .C file. If ‘-n’ is not specified, USSA will generate ‘#include
“file.h”’ statement in the beginning of the generated file.C.

b

If specified, USSA will generate parsing tables and respective classes for all
defined, even extern, types. Parsing tables and actions from rules will be put in
.C file, definitions of classes in .h file. Usually, at least one USSA source file con-
tains extern types. This file must be compiled using ‘-b’ option. In order to
refer to types defined in such a file, other USSA sources must include this file and
must be compiled with ‘-n’ options. They must also have an external action
with C++ #include statement for the generated .h file.

20 August 19, 1992

of actions which should be executed at the end of each of reductions
until it makes sure that no reduction in the chain causes a syntax
error. This delayed execution is done to avoid side effects which
such actions may cause (like damaging internal data, or spawning
scripts which affect the whole UNIX system). Also, if an error is
detected after some reduction, USSA parser restores parsing stack to
the state were the chain of reductions has began and discards the
message which has caused that error. If an error is detected during a
shift, the erroneous message is also discarded and parser remains in
the state were the error occurs. Therefore, any series of unexpected
messages is discarded at the same state of LR1 tables until the right
message appears. User may avoid discarding of messages, or may
define its own error recovery procedure by redefining virtual func-
tion errorBMon::UserRecoverBMon() (see files skelb-
mon.[ch]). Another feature of real time parsing is that USSA
parser always executes actions right after it decides that the chain of
reductions is safe, without looking for a lookahead.

Synthesized attributes are accessed from actions in the same way it
is done in YACC: via ‘$’ variables. However, currently, user have
no means to change the type of an attribute (see previous chapter
1.7).

When rules from several base types are united in a single set for the
derived type, the order of rules and of associativity declarations is
preserved within each base type. Rules and declarations from differ-
ent types are arranged in order of these types in the inheritance list.

ACTIONS. As it has already been mentioned, actions may be placed
outside of any rules: within or outside of types (see previous chap-
ter 1.7). Such external actions may contain any C++ definitions and
declarations, as well as preprocessor directives.

1.9 USSA COMMAND LINE

Typing USSA without any arguments causes it to printout a help message on the
screen explaining its command line format. If arguments are specified, they must
obey the format:

[-options...] sourceFile [-options...]

The USSA source file sourceFile have the default extension .us (if the exten-
sion is not specified, and there is no file named sourceFile in the current direc-
tory, then USSA will try to open ./sourceFile.us). Options are explained
below:

August 17, 1992 19

 token a b c; // define terminals
 word aa bb cc; // define nonterminals

Equal rules within the same type are allowed and cause no prob-
lems unless they have actions or message instructions.

REGULAR EXPRESSIONS. They are allowed in the right part of
context-free rules. The meta-rules for the regular expressions are:

 regularExpr : name *
 | name +
 | < rightPartOfTheRule > *
 | < rightPartOfTheRule > +
 ;

‘*’ means zero or more times, ‘+’ means one or more times. The fol-
lowing are examples of regular expressions in USSA:

LIFE : state +; // one or more instances of ‘state’

state : < x y > *; // zero or more instances of
 // ‘x y’

LIFE : < on | off > +; // one or more instances of
 // ‘on’ or ‘off’

x : < y { cout << “y” } | // zero or more
 z { cout << “z”; } > *; // instances of ‘y’
 // or ‘z’ with a
 // particular action

u : < a < b | c > * | d +> * v;// complex regular
 // expression

CAUTION. Currently USSA does not process correctly the same
regular expression included several times from a number of the
same base types. Therefore, it is recommended to use regular
expressions only in the type which is not a multiple base class for
the other types. Also, some innocent looking regular expressions
may cause parsing conflicts. These problems will be fixed in the
future.

REAL TIME PARSING AND ERROR RECOVERY. Unlike the LR1
parsing algorithm used by YACC, USSA parser makes several pre-
cautions due to the real time nature of its environment. If the USSA
parser faces a chain of reductions at run time, it postpones execution

18 August 19, 1992

1.8 CONTEXT-FREE RULES

The syntax and semantics of context-free rules in USSA are similar to those from
YACC. Rather than providing full description, we refer interested reader to
YACC’s documentation. However, there are some differences which we list
below:

All keywords from YACC, except %type, are valid and have the
same sense in USSA. However, the leading ‘%’ need not be present,
for example: token must be written in USSA instead of %token in
YACC.

All rules must be finished by ‘;’ (in YACC the trailing ‘;’ is
optional).

Token definitions need not start from a new line. They must finish
by ‘;’, for example:

 left x y z; token a b c d e;

There is no distinct sections for tokens, rules, and executable code
divided by ‘%%’ lines as in YACC: rules, token definitions and
external actions may be intermixed in any order, for example:

 x : a; token b; a : b;

Names of nonterminals and terminals may contain letters, digits,
and ‘_’, but the first symbol must be a letter.

Start symbol named LIFE is introduced automatically in every type
definition, as well names EndOfStream and ACCEPT. All of them
have global scope (see previous chapter 1.7). Also, the following
rule is created:

 ACCEPT : LIFE EndOfStream;

It is not recommended to use nonterminal ACCEPT in the user writ-
ten rules. Nonterminal LIFE can appear only in the left side of any
rule. Because LIFE is a start symbol, user must construct its rules so
that nonterminals in the base and derived types could be reached
from LIFE by a chain of rules.

Sometimes actions or message sending instructions must refer to a
name which is not a member of any rule of the type. In this case user
must define such a name using keywords left, right, token, or
nonassoc for terminals, or word for nonterminals, for example:

August 17, 1992 17

extern TYPES

Keyword extern before a type definition is used to prevent USSA from generat-
ing parsing tables for this type unless the special flag ‘-b’ is specified on the
USSA command line (see chapter 1.9 for USSA command line format):

extern type a [/* some rules */];

 The extern keyword combined with the use of ‘-b’ flag is used to allow for
separate compilation of USSA sources (see chapter 1.9 for details).

abstract TYPES

Keyword abstract before a type definition prevents USSA from generating
parsing tables for the type. No nodes of abstract types can be created. Keywords
abstract and extern may be combined. Abstract types are used to prevent
generation of redundant C++ code for types which serve only as base types:

abstract type a [/* some rules */];

include STATEMENT

USSA source files may be included in each other much like C++ sources.
include statement must not end with semicolon. The format of the statement is:

include “file” or include <file>

The first format forces USSA to look for the file file in the current directory. The
second format implies that file is in the directory /usr/reliant/include/,
unless it is redefined by ‘-i’ option on the USSA command line (see chapter 1.9).
The include statement may only appear outside of any action or C++ code, and
outside of any rule, token, or node definition.

MACROS IN THE BASE TYPES

When rules from the base type are added to the rules of the derived type, user
may change names of some tokens via macros. Macros are specified together with
the links of the base type in the format oldName = newName:

type a(x) : b(x, u=v, w=t) [/* some rules */];

Here x is a link, but u=v and w=t are macros. In the type a tokens u and w from
the rules of type b will be replaced by tokens v and t respectively:

type b type a
u : z w; becomes v : z t;

16 August 19, 1992

MESSAGES AND SYNTHESIZED ATRIBUTES

Synthesized attributes are used in actions to access values associated with the
grammar tokens (see details about using attributes in the next chapter 1.8). When
USSA lexical analyzer accepts a message it also creates its synthesized attribute of
class sAtribus. This class is defined in atribus.h as follows:

class sAtribus
{
public:
 typeProto *Node; // the node which sent this message
 union // the message itself
 {
 long Number;
 char *Word;
 };
/* constructors and some member functions */
};

As it is for the file nodus.h, the #include statement for atribus.h is gener-
ated by USSA automatically. If the incoming message has a string value for the
synthesized attribute, then field Word points to that string. Otherwise, field Num-
ber has a local enumeration code for the message itself (this code may differ from
the code for the same message when the message was sent from Node: functions
Send() always translate these codes). In any case, the following public members
of typeProto hold the last received values of enumeration code and of a synthe-
sized attribute:

 brick LastToken; // last message received
 // by the node
 char *LastContentScript;// attribute from this
 // message (NULL if
 // absent)

Here brick is a macro defined by USSA either as short or as long.

PLACEMENT OF EXTERNAL ACTIONS

All external actions from outside of types definitions are gathered and placed
before the generated C++ code in the beginning of the generated C++ source file.
However, the order of external actions from inside of types definitions is pre-
served in the generated C++ source. The order of the C++ classes generated for
USSA types is also preserved. Therefore, C++ compiler may complain about the
undefined forward references. This will be fixed in the future and the order of all
types and external actions will be preserved in the generated C++ source.

August 17, 1992 15

///
//The next five functions send a message to a node specified
//by the first argument. The second and the third arguments
//(if any) have the same meaning as above.
///

 void Send(typeProto *, long);
 void Send(typeProto *, char *);
 void Send(typeProto *);
 void Send(typeProto *, long, char *);
 void Send(typeProto *, char *, char *);

///
//The next five functions send a message back to the node
//whose message has been received last (LastSender).
///

 void SendBack(long);
 void SendBack(char *);
 void SendBack();
 void SendBack(long, char *);
 void SendBack(char *, char *);

//
//The next five functions send a message to all descendants
//of the current node.
//

 void SendChilds(long);
 void SendChilds(char *);
 void SendChilds();
 void SendChilds(long, char *);
 void SendBack(char *, char *);

//
//The next five functions send a message to all ancestors
//of the current node, i.e. to all nodes which have the
//current node as a descendant.
//

 void SendParents(long);
 void SendParents(char *);
 void SendParents();
 void SendParents(long, char *);
 void SendParents(char *, char *);

14 August 19, 1992

Due to limitation in the implementation of virtual base classes in AT&T C++ fron-
tend, it is impossible to cast the address of a descendant l() to its exact type (like
(a *)l()). However, a user may arrange his hierarchy of types such that all
types will have the same common base called basic, with the virtual member
function basic *GetBasic(). User must redefine this function for every type
to return this pointer. At run time, it must be used either as l()->GetBasic()
for the descendant l, or just as GetBasic() for the node itself. This technique
implies that the values of interest will be defined in the class basic. It may be
convenient when the exact type of the accessed node is not known statically.

Another possibility is to use the value of the pointer member It and cast it to the
statically known type of node.The value of It is set at run time automatically for
every node.

COMMUNICATION BETWEEN NODES

Messages may be sent not only from the message sending instructions, but also
from the actions. This may be convenient, for example, when the action must run
some C++ code in order to decide which message to send to which node. Class
typeProto contains public member functions for this purpose:

///
// The following five functions send messages to the node
// itself by putting a message in front of the message
// queue. All other sending functions place it at the end.
///

// send itself a token (= a value of local enumeration)
 void Send(long);

// send itself a token (= argument)
 void Send(char *);

// send to itself the last received token
 void Send();

// send to itself a token (= a value of local enumeration),
// and a string as a synthesized attribute
 void Send(long, char *);

// send to itself a token (1st argument), and a string (2nd
// argument) as a synthesized attribute
 void Send(char *, char *);

August 17, 1992 13

C++ code from outside of any type, or from an external action may use names of
tokens as manifest constants. For every token n from type t USSA generates a
preprocessor definition #define n_t x, where x is the value of local enumera-
tion for n in the generated class t. These definitions are placed in the generated
.C, .h, and .m files (see chapter 1.9 for more details).

LOCAL AND GLOBAL NAMES

Each terminal and nonterminal has either local or global scope. Scope is specified
in the terminals definition statements token, left, right, nonassoc, or in the
nonterminals definition statements word via keywords local or global:

token local x y z; // local terminals
left global u v; // global left associative terminals
word global a b c d; // global nonterminals
word e f g; // local nonterminals

The absence of local or global keywords implies local scope. A nonterminal
defined implicitly just by its appearance in a context-free rule has local scope
unless it is redefined via the ‘word global’ statement.

The difference between global and local scopes plays role in derived types. Global
names from the base type remain the same in the derived type. On the contrary, a
local name n from the base type t is changed to _t_n in all the derived types.
Global names are used when different types mention the same terminal or nonter-
minal in their context-free rules (see example in previous chapter 1.6). Local
names are used to prevent name clashes among different base types.

Currently, a reference to a local name from an action is safe only when the type is
not a base type of any other type. Otherwise, such a reference may cause C++
compile errors.

SOME USEFUL MEMBERS OF typeProto CLASS

Class typeProto is a virtual public base class for any node. It is defined in the
supplied file nodus.h. USSA generates #include statement for this file auto-
matically. The following is an extract from typeProto definition:

public:
 void *It; // address of the node itself
 size_t Size_us_; // size of the node
 char *NodeName; // this node name
 typeProto *LastSender; // last sender to this node
virtual basic *GetBasic() { return 0; };

12 August 19, 1992

USING LINKS, TERMINALS, AND NONTERMINALS IN
RULES, ACTIONS, MESSAGES, AND OTHER C++ CODE

Names of links, global terminals, and global nonterminals may be used freely in
actions, rules, and message sending instructions (see next chapter for local and
global names). USSA creates local enumeration per each type in order to assign
local integer values to these names. When such a value is sent to other nodes, the
run time translation guarantees that the receiver gets the right value:

type a
[
LIFE : z { cout << “\nz=“ << z; } // z in action
 (z - ^) { cout << “\nsent back”; } // z in message
 ;
];

type b(a l)
[
LIFE : z (z - l) // z and l in message
 { cout << “\nz sent to a descendant”; }
 ;
];

node a A; // nodes A and B will exchange message ‘z’
node b(A) B;

Descendant node named l may be accessed from actions using private member
function l() generated automatically by USSA. This function returns a pointer to
a C++ object representing the designated node. The return value of l() has a C++
type typeProto *. Class typeProto is a virtual public base class for all the
classes which USSA generates for USSA types. It has some data and member
functions defined and initialized automatically, such as a name of the node,
pointer to parsing tables, etc.:

type c(a l)
[
LIFE : z
 (- l)
 { cout << “\nsend z=” << z << “ to “ << l()->NodeName
 << “ from “ << NodeName; }
 ;
];

node c(A) C; // at run time the printout will be
 // ‘send z=2 to A from C’

August 17, 1992 11

1.7 DETAILS ABOUT TYPES AND NODES

DEFAULT CONSTRUCTORS

Nodes defined in the USSA files are created right after Base Monitor (bm) starts,
before any message is passed to any node. bm blocks all UNIX signals during that
period of time, and allows them only after all constructors for all nodes will have
finish. If a type constructor forks another UNIX process, that process must
unblock needed signals itself.

USSA converts a type t to a C++ class t. For every node n of type t USSA creates
a C++ class named t_us_n publicly derived from t and a C++ object of this class
named n. At that time the default constructor for t is called (if defined). There-
fore, this constructor may run the code common to every node of type t. Code for
a particular node must be placed in the curly brackets in the node definition:

type a
{
public:
 int x;
 a() { /* common initialization code */ }
}
[/* rules */];

node a{ x = 1; } n1, // run a(), then set x = 1 for node n1
 a{ x = 2; } n2; // run a(), then set x = 2 for node n2

In fact, if a type is defined but there is no node of such a type, the system still cre-
ates a global C++ object of the respective class. Therefore, the default constructor,
if defined, will be executed at least once on behalf of that object. In order to pre-
vent execution of the critical code within the constructor several times for several
nodes, static data members may be used:

type a
{
public:
 static int s;
 int x;
 a(){ if (!s) { s++; /* execute critical code once */ } }
}
[
 { // external action:
 int a::s = 0; // initialize static member of the type a
 }
 /* rules */
];

10 August 19, 1992

 father John mother Joan

sister Mary brother Terry

 N O D E S

 father mother brother sister

 parent

 sibling

 child

 hiBye

 T H E H I E R A R C H Y O F T Y P E S

 child parent mother father

 father mother child child ... child child ... child child ...

 sibling brother sister

 father mother father mother sibling ... father mother sibling ...

L I N K S B E T W E E N T Y P E S

August 17, 1992 9

1.6 EXAMPLE

The following example shows definitions of some types and nodes. Graphs show
links between nodes, the hierarchy of types, and links for different types:

type hiBye { token global Hi Bye; }; // type definition
type parent, mother, father; // type declaration

type child(father, mother) : public hiBye //links and
{ //inheritance
word global receiveSend;
LIFE : receiveSend +;
receiveSend : Hi (Bye - >); // receive Hi, send Bye
};

type parent(child ...) : public hiBye // variable number of
{ // links
word global sendReceive;
LIFE : sendReceive +;
sendReceive : (Hi - >) Bye Bye;//send Hi,
}; //receive two Bye’s

type mother(child ...) : public parent() {};
type father(child ...) : public parent() {};
type sibling(father f, mother m) : public child(f, m) {};

type brother(father f, mother m, sibling ...) :
 public sibling(f, m)
{ receiveSend : Bye (Bye - ^,<)
 { cout << “\nI am a brother\n”; }; };

type sister(father f, mother m, sibling ...) :
 public sibling(f, m)
{ receiveSend : Bye (Bye - ^,<)
 { cout << “\nI am a sister\n”; }; };

declare node brother Terry, sister Mary, // node declaration
 mother Joan, father John;

///
// definition of nodes: descendants may have derived, not
// the exact types of links
///
node brother(father John, mother Joan, sibling Mary) Terry,
 sister (father John, mother Joan, sibling Terry) Mary,
 father (child Terry, child Mary) John,
 mother (child Terry, child Mary) Joan;

8 August 19, 1992

object. The Base Monitor provides message passing mechanism and invokes pars-
ers of the appropriate nodes to parse the message flow. The parsers, in turn,
invoke actions while reducing context-free rules.

Several shared objects may be prepared from several files with USSA sources. At
least one of such shared objects must be linked with bm and USSA libraries stati-
cally, and if any two of these sources refer each others types and/or nodes, then at
least one of these two must be linked with bm statically (limitations come from
UNIX dynamic linker). Linking compiled types and nodes as shared objects
allows for the modification of the set of active nodes at run time via UNIX SVR4
dlopen/dlclose system calls without restarting the whole system. The follow-
ing scheme shows the process of preparing shared objects:

src1.us src2.us srcI.us

 U S S A

src1.[Ch] src2.[Ch] srcI.[Ch]

C + +
USSA skeleton parser
and run-time support
library

 USSA sources

C++ sources

Shared
objects

src1 src2 srcI

 bm

 Single address
 space at run
 time

August 17, 1992 7

1.4 ACTIONS

A piece of C++ code enclosed in curly brackets and stored in the right part of a
rule is called action. It is executed when the rule (or its part) is reduced by the
parser while parsing the message flow. Action is treated as a protected member
function of the type (remember: type is a C++ class + context-free rules). There-
fore, it may access other data members of the type and may call its member func-
tions. In the next example the value of X will be printed every time message is
received:

type x
{
public:
 int X;
}
[
LIFE : < message { cout << “\nX = “ << X; } >*;
];

A piece of C++ code in curly brackets outside of any rule in the rule’s section or
outside types may be used to store additional C++ classes, objects, preprocessor
directives, e.t.c. This code is called external action:

{ #include <iostream.h> } // external action
type x
{
public:
 int X;
}
[
{ #include “userFile.h” } // external action
LIFE : < message { cout << “\nX = “ << X << userObject; } >*;
];

1.5 RUN-TIME ENVIRONMENT.

After definitions of some types and nodes have been written in USSA metalan-
guage, they must be prepared to run. First, USSA parses these definitions and
generates a C++ code. In this code, USSA types will be converted to C++ classes,
USSA nodes will be converted to C++ objects, and minimal LR1 parsing tables
will be generated from the type’s context-free rules - a set of tables per each type.
Also, the run-time support data and functions to support communications and
actions will be generated. After that, generated sources will be compiled by C++
compiler and then linked with the USSA skeleton parser and run-time support
library in a UNIX SVR4 dynamic shared object file. Finally, the Base Monitor
(called bm) is executed which dynamically links with the just created shared

6 August 19, 1992

destination : name // node or descendant called name
 | empty // send to all descendants
 | ^ // send to the last sender
 | . // send to itself
 | < // send to all ancestors
 | > // send to all descendants

When nodes are linked in a cyclic structure, declarations of types and nodes must
appear prior to their definitions. This is because neither of them could be defined
without information about the others. Declaration of a type is indicated by the
keyword type followed by it’s name with no members and/or rules. Declaration
of a node is designated by keywords declare node followed by the node name:

type a; // declaration of type a
type b(a x) [/* ... */]; // definition of type b
type a(b x) [/* ... */]; // definition of type a

declare node A; // declaration of node A
node b(A) B; // definition of node B
node a(B) A; // definition of node A

A

B

August 17, 1992 5

Derived types inherit all links from their base types. They must specify a list of
descendants which includes all descendants from the base types. Names of links
may differ from the names in the base type definition; common names for links in
inherited and base types denote the same link:

type a [/* ... */];
type b(a x, a y) [/* ... */]; // two links of type a
type c(a x, b y) [/* ... */]; // links of types a and b
type d(a x, b z) : c(x, z), b(x, x), a [/* ... */];

In the above example d is derived from c, b, and a. It has two links x and z.
These links are also specified in c and b. The following graph consists of some
nodes of the above defined types:

node a A1;
node a A2;
node b(A1, A2) B;
node c(A1, B) C;
node d(A2, B) D;

Messages may be sent not only to a particular descendant, but to any other nodes:
their names must be specified in the message sending instruction, like

(message - nodeName).

The general format of message sending instruction is:

(message <,message>* - destination <,destination>*)

// above means ‘send all specified messages
// to all specified destinations’

message : empty // last accepted message
 | string // terminal or nonterminal named string
 | ‘string’ // literal ‘string’

A1 A2

 B

C D

4 August 19, 1992

node b node1; // 1st node
node b node2; // 2nd node

An optional C++ initialization code is stored in curly brackets after the type name.
This code is executed at the time the node is created:

node b { x = 1;} node3;

Currently, nested types and nodes inside types are not allowed.

1.3 COMMUNICATION BETWEEN NODES.

Nodes accept messages from each other at run time. The USSA parser uses tables
associated with the node to parse these messages according to rules from the
node’s type. Some rules specify what messages will be sent to which nodes. The
message sending instruction is placed in the right part of the rule in parens. The
following rule sends the message reply to the node whose message has been
accepted last:

type a [gotIt : message (reply - ^);];

Some nodes may be linked to the other nodes so that the entire set of nodes
becomes a directed (may be with cycles) graph. Links must be specified in the
type definition as parametrized names of linked nodes and are used in the rules
as the destination addresses. When a node of a type with links is created, they are
substituted with the names of known nodes. The node itself is called ancestor, and
its linked nodes are called descendants. Descendants may have the exact type as
their parameters, or may be derived from them. They are indicated as a list in
parens following the type name in the type and node definitions:

type typeName(type1 n1, type2 n2, . . .) {/**/} [/**/];
node typeName(type1 n1, type2 n2, . . .) nodeName;

Here typeI is the name of type, nI is the name of a link (descendant). The last
nI in the type definition may be indicated as ‘...’, which means there could
be any (0 or more) numbers of descendants of typeI. In the node definition
typeI may be omitted. In the type definition nI (not equal to ‘...’) may be
omitted if it is not used in member functions or syntax rules. The following exam-
ple shows a single link:

type d [/* some rules */];
type a(d x) /////////////////////// descendant x of type d
[gotIt : message (reply - x); // send ‘reply’ to node x];

node d node1; /////////node1 of type d
node a(node1) node2; //node2 of type a sends ‘reply’ to node1

August 17, 1992 3

Here, ‘|’ means ‘or’, ‘*’ - repetition. As in context-free grammars, symbols
opened, closed, and i_o_in_progress are nonterminals, but OpenFunc-
tion, CloseFunction, ReadFunction, and WriteFunction - terminals.

In USSA, types and nodes are used to model an application in the way classes and
objects are used in C++. Each node must be of a particular type. A type defines a
C++ class and a number of context-free rules which control communication
between nodes. Nodes may be linked to allow for convinient and optimal com-
munication. Context-free rules are applied in order to parse the flow of incoming
messages. A rule may have embedded C++ code (called action) which is executed
when the rule is applied.

Chapters 1.2 -1.6 contain fast presentation of USSA. Details start from chapter 1.7.

1.2 TYPES AND NODES

A type in USSA is a C++ class annotated with a number of context free rules.
Rules are written in square brackets after the class definition. The keyword type
is used instead of the C++ keyword class. For example:

type a
{ //////////////////////// data and member functions
public:
 int x;
}
[////////////////////// rules
 word global message; // ‘message’ is a nonterminal
 LIFE : message*; // ‘LIFE’ is a sequence of ‘message’s
];

Data and member functions are optional. Types inherit data and member func-
tions from other types (as C++ classes do in v3.0). Rules from the base types are
always added to the derived type:

type b : public a
[message : START | STOP;];

Derived type b has two rules: the one defined and the one inherited from type a:

LIFE : message*; //////////////// inherited rule
message : START | STOP; ///////// defined rule

A node is an instance of a type. It has data and member functions associated with
the class portion from the type definition. Rules from type definition are also asso-
ciated with the node. In fact, the minimal LR1 parsing tables generated automati-
cally by USSA from the rules are used in order to parse a flow of messages coming
to the node. Different nodes of the same type share a single copy of tables. A node
is defined via keyword node followed by the type name and then the node name:

2 August 19, 1992

USSA

1.0 ABSTRACT

The metalanguage of USSA (Universal Syntax and Semantics Analyzer) specifies
software systems in the declarative style using object oriented methodology. The
system in question is presented as a collection of objects each annotated with a
number of context-free rules which control receiving and passing of messages. It
works under UNIX SVR4 and C++ v3.0.

Note: the following text implies some knowledge of the object-oriented design and of C++
language. Also, an elementary notion of context-free grammars is expected.

1.1 INTRODUCTION. USSA -VARIOUS POINTS OF VIEW

There are several equivalent intuitive ideas behind the USSA metalanguage. We
present two of them: ‘objects with states’ and ‘objects with rules’.

Objects with states

During the lifetime of an object it undergoes a number of state changes as a result
of applying various methods. For example: a C++ file stream becomes ‘opened’
after successful completion of the open() function. Then, some i/o operations may
be in progress.Eventually it becomes ‘closed’ upon calling the close() function.
Therefore, its sequence of states and applied methods may be written as:

opened : closed OpenFunction;
closed : opened i_o_in_progress CloseFunction;

In USSA, each object is annotated with a number of rules describing its states and
the order of transition between different states as a reaction to various methods.
In the above examples opened, closed, and i_o_in_progress are states, but
OpenFunction and CloseFunction are methods. Methods are viewed as
messages which must be accepted in the order specified by the rules.

Objects with rules

Each object understands certain messages and sequences of messages. Messages
which it does not understand are ignored, as well as those coming in the wrong
order. For example: an attempt to read a closed file is ignored. The flow of mes-
sages is viewed as a sentence from some language. Therefore, an object is anno-
tated with context-free rules describing that language. The following rules
describe such a language for C++ file streams:

opened : closed OpenFunction;
closed : opened i_o_in_progress CloseFunction;
i_o_in_progress : <ReadFunction | WriteFunction>*;

August 17, 1992 1

USSA Boris Burshteyn, Pyramid Technology, San Jose CA, bburshte@pyramid.com

Practical guide

CONTENTS

1.0 Abstract..2
1.1 Introduction. USSA - various points of view.....2
1.2 Types and nodes.................................3
1.3 Communication between nodes.....................4
1.4 Actions...7
1.5 Run-time environment............................7
1.6 Example...9
1.7 Details about types and nodes..................11
 Default constructors..............................11
 Using links, terminals, and nonterminals in rules,
 actions, messages, and other C++ code..........12
 Local and global names............................13
 Some useful members of typeProto class............13
 Communication between nodes.......................14
 Messages and synthesized attributes...............16
 Placement of external actions.....................16
 extern Types......................................17
 abstract Types....................................17
 include statement.................................17
 Macros in the base types..........................17

1.8 Context-free rules.............................18
 Regular expressions...............................19
 Real time parsing and error recovery..............19

1.9 USSA command line..............................20
 Special flags.....................................23

1.10 Conclusion. A brief history...................24

